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ONA METHOD FOR OPTIMIZATION OF TIME-VARYING

M3KlU!RSYSTEMS WITH NONSTATIONARY INPUTS

w Marvlu Shinbrot

By means of examples, a new method is illustrated for crptimizing,
over a finite interval of time, time-varying systans with stationary or
nonstationary statistical inputs. The method depends on the correlation
functions being of a certain type, which, fortunately, is the type found
in a large number of practical problems of importance.

INTRODUCTION
.

Recently, particularly because of their application.to missile and
fire-control systems, considerable attention has been paid to optMza-
tion techniques for systems ha”vingstatistical inputs. Historically,
such techniques begin with Wiener~s theory (ref. 1) of the optimum design
of constant coefficient linear systems. To apply this theory it is
required that the statistical properties of both the messages and the
noise do not vary with time; quantities having this invariance property
are called “stationary.’lThis requirement, that messages and noise be
stationary, is quite restrictive, eliminating fiam consideration even
such a simple problem as the optimal determination of the position of a
gun target, say, when the target is moving with constant speed in a
straight line and the measurements are corrupted by noise. It seems
desirable, therefore, to eliminate this hypothesis, if possible.

In reference 2, Booton attempted to generalize the Wiener theory
to include nonstationary inputs and time-varying linear operations.
Booton arrived at an integral equation, the solution of which would be
the impulse response of the optimum system. However, no method for
solving the equation was given.

A new method for solving integral equations such as the one Booton
derived was recently discovered (unpublished). This method requires that
the correlation functions which arise be of a certain form; fortunately,
this requirement is very frequently satisfied in practice.

The purpose of this report is
of the application of this method.

the illustration by means of examples
Since nonstationary optimization
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problems may lead to a time-varying linear systa as the dptimum, the
report begins with a brief discussion of the perhaps unfamiliar idea of
a time-varying transfer function. The report proceeds with an outline
of a variant of the theory of reference 2, itemized, step-by-step pro-
cedures for sol- the integral equation for the impulse response of
the @xhuum system, and some relatively s~le examples. Techniques for
determining the differential equations of the optimum system from the
impulse response are also shown in the examples. It is hoped that a
study of these examples will be sufficient introduction to the subject
to allow the method to”be applied to more difficult practical problems.

.

~ DISCUSSICXJ.

TIME-VARYING TRANSFER FUNCTIONS

!L%emeamhg of the M-Se response g(t - T) of a time-invariant
transfer function is well known. If the transfer function in question
is of the form

m-
F(p)

where p denotes the operator d/dt, and f snd F are polynomials,
then g(t - T) is the response of this system at time t to an impulse
applied when t = T; that is,

F(p)g(t - T)= f(p)~(t- T)

where b(t - T) synibolizesthe Dirac 5 function (ref. 3) . The IUOSt
important property of this impulse response is that if i(t) is any input
to the system, then the output in response to i(t) is

t

J’
g(t - T)i(T)dT (1)

-co

For time-varying systems, the idea of an hnpulse response also
exists. Consider the trsnsfer function

f(t,p)

F(t,p)

The 3mpulse response g(t,T) for this system then Satisfies the equation

F(t,p)g(t,T)= f(t,p)~(t- T)

,,“

u
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It should be noted that for time-varying systems, the impulse response
is some function of t end T, and does not depend on their difference
alone. The fundamental~operty (1) carries over to time-varying systems.
If i(t) iS any input to the system, the output is

t

J g(t,T)i(T)dT (2a)

-m

As an example of this, consider the simple system with transfer
function .

1
p+tz

The impulse response satisfies the equation

a g(t,T)+ t2g(t,T)=8(t -T)
s

It can be shown that this means

@-t3

g(t,T)=e 3 U(t -T)

(where
so that

u(t) is the unit step function”: U(t) =o, t<o, u(t) =l,t ~o)
the response to any input i(t) is

.

Note, incidentally, that

g(t,T)= O for t<T

This must always be the case for, if it were not, the s&em would be
required to respond to an tiput before the latter occurred.

NOIYLTIONAND DEFINITIONS

Although the ideas discussed herein have application to different
fields, for ease of expression, the language of communication theorist

.-. —.—-+ ___ .—. ——--——— ____ ._
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will be used throughout -
derive from an “input” m
corrupted by “noise.”

NACATN 3791

thus, we shall speak of “filters” designed to
appro~tion to a %essagen which has been

,,

Nuw, there will always be an ensenibleof messages it is desired to
M

transmit. Denote a typical message by the sydbol m(t; al, . . ., ~); the

parameters a indicate which particular message of the ensenibleis being
considered. Denote the possible rioiseflznctionsby n(t; ~1, . .
The input to the filter we are attempthg to design is defined by

●, $&

●

i(t; al, . . ., q, j3~,. . ., @

= m(t; al, . . ., ~) +n(t; ~1, . .’., ~N)

If f(t; al,
the parameters a

.

● ☛ “> *9 $Z> “ “ “9 ~) is any function of t and
and ~, we shall mean by

{
Av f(t; G=, . . ., ~, ~1, . . ., l%?)}

the average of f with respect to the a?s and ~ts, that is, with respect
to the ensemble.

For later use, we now define the following correlation functions:

{
~m(t,-r)= Av m(t;al, . . .,~)m(T;q, . . .,q)

}

——-——..— —— — ——-—— . . . . .. —-—. .—. . —.- .—--— — —_____
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THE INTEWML EQUATION FOR THE OFTIMUM

..,

..

v

.

lh reference 2, Boston, using the methods of reference 4, aerivea
an integral eqmtion for an optimum filter. Although the methods to be
discussed are applicable to Bootonls equation also, we shall apply it to
a slightly d.ifferent one. The reason for this is that Booton considered
the general case when the @puts to the filter have no beginning h time,
so that the system has been tn uperation tifiuitely long. Of course, in
all real situations, a starting point exists - a t-e when the telephone
is first picked up or the missile is first firedj etc. In view of this,
the simplifying assumption that the imputs are nonexistent (zero) up to
a certain time will be made here. By an appropriate choice of the time
scale, this distinguished instant may be made zero. lh this case, the
response (2) of a system with impulse re~onse g(t,T) to the input
i(t) reduces to

4.

J’
IJ
g(t,T)i(T)dT

.0

(2b)

Now, it is desired to filter the inputs to give as good as possible
a representation of the messages; that is, it is desired to specify an
impulse response g(t,T) such that, in accordance with (2b)

is as close as possible to m(t; al, . . ., ~). The expressions “as
good as possible” and ‘as close as possible” remain to be defined. They
will be taken to mean that the mean square error is as small as possible
that is, g(t,T) is to be chosen such that

{[
~(t) =Av m(t; al, . . ., q) -

is a minimum. It should
error IF is a function
to the ense?iblewith t

Now, it is not hard
give

.

be noted, incidenta~, that the mean sqyare
of t since the average is taken with respect
fixed.

to show that equations (3) and (k) together

. . .. —-. ——- ..— -... — —-—- .—— —. — .— ---- .- -.—. .
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t

E2(t)= qm(t,t) -2
I

g(t>T)9ti(t,T)dT+
f’g!~T)[

g(t>~)~iika)du dT
o 0

and, by a
it can be
satisfies

(5a)

method exactly parallel to the one used in references 2 snd 4.,
shcnm that this error is a minimum if and O- if g(t,T)
the linear integral equation

~serting

“o

equation (6a) into (’ja)gives for the minimum mean square
error:

t

E%njJ.@) = %(W -I d_hd%&ddT (7a)
4

0

Not infrequently, it is desired to generalize this technique in the ~.

sense that it is desired to obtain from the input some quantity dependent
on the message but nut the message itself. Thus, for example, it might
be desired to predict the message h seconds hence or to integrate or
differentiate the message. TO dO this, we ~ze

~(t) = Av
{[

p(t; al, . . ., @ -
,

t

J
2

g(t,T)i(T; al, . . ., q, ~1, ● ● .> 1}j3#T (kb)

o

where y is the quanfitywe wish to obtain fran the input. Thus, if it
is desired to inte~ate the messagey p(t; CL12. . .$ ~) is the integral

of m(t; al, . . ., ~); if it is desired to differentiate the message,
~ is the time derivative of m, etc. Defining

ql&T)=
{

Av ~(t; al, . . .,q)v(T; aI, . . .,% )}

Qw(t,d =
{

Av p(t; al, . . ., q)i(T; al, . . ., q, j31,. ● ., I@}

.,

.%
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we find that the

E2(t)= q~p(t,t)-

generalization

7

of equation--(5a) is

(Z)

The equxtion from which the optimum impulse response is to be determined
is

and the minimum
.

mean sqwe error is

(m)

Since equation (6b) is the more general, in the sense that it reduces
to (6a) when v is set equal to m, all considerationswhich follow will
refer to this equation. If the problem is simply one of filtering, it
will.only be necessary to set v = m in all that follows.

.

n

ASSUMPTIONS

The basic assumptions which will be made
folluwing:

(i) The func_Wms cpii(t,T) =dq@(tjT)

P

I
~(t)bp(T) ,

1“

f
y(T)bp(t) ,

1.

in this paper are the ,

are of the forml

T<%

T>t

T~t

(8a)

4

L

lMore generally> ?ii is allowed to involve 5 functions depending

On t- T (white noise); however, as will be seen, this is a Mm13.tingcase
of the form (8).

. . . . . .. ..— — —— .—. — — .— .- .—— — .—. .—
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/

(ii) If ~(t) and ~(t) have the same meaning as in (i), then the
Qmtity

D
A

w= z[ap(t)bp(T) - ap(T)bp(t)l
.
A.

is a function of t - T alone:

w=w(t-T)

The following remarks on these assumptions are pertinent. First,
in almost all cases of @ortance, qii and Q

e

either will.be of the
form (8a) or x be successfully a~roximate by functions of this form~
this can be seen from the definition (3) of Vii and pd as averages of

products of functions of t and functions of T. Second, note that the
expression fOr Cpii(t,T)when T > t is a necessary consequence of the
assumed form ~fhen T ~ t and is not a separate assumption since, by its
def~tion (3), (J)44(t,T)= Cp4+(T,t). mm, under certain circwtances

where the assumpt& (ii) do~~ not apply, alternative methods still exist.

Imi3MmEs

Five examples will be @yen. They were chosen primarily to illus-
trate different aspects of the problen of solving the fundamental integral ‘
equation. In order to do this most successfully, the examples have been
broken up into three groups: _les invOIVi.ngwhite noise, exsmples
with other @es of noise, and a third class of examples, the necessity
for which~~ appear as we proceed.

WIICL’ENOISE

White’noise is said to occur when the
the noise has the form

Cpm(t,T) =~(t-

autocorrelation

T)

where 5(t-T) denotes the Dirac 5 function”. As will be

function of

seen in the
next section,-thiskind of noise can be considered as a limiting case of
“continuous”noise, and so a problem involving white noise can always be
solved by setting up and solving another problem involving continuous
noise and then taking limits. A simpler procedure, however, wouldbe to
describe a method for solving problems with white noise directly.

.—--- - .- — —.
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~ order tO dO SO,
nnzstbe made. We shall

(i’) The functions

.

.)

~ii(tjT) =

q~(t,d =

9

some assumptions resabling (i) and (ii) above
assume the following:

of 9ii(t~T) ~d 9Vi(tjT) have the form

Q

x+)bq(’d+ ~(t - T) ,
1

Q

I a@bq(t) +~~(T- t) ,

1

Q

Y. cq(t)bq(T) >
Y

(ii’) If ~(t) and bq(t) have the same meaning
the quantity

Q

(8b)

as in (it), then

v= z[aq(t)bq(d - q(T)bq(t)]
.
-L

is a function of t- T alone:

v = V(t -T)

With these assumptions, a method for solvlng the integral equation when
the noise is white canbe outlined.

SJ!EP1. Let BO(S) and V(s) denote the Lsplace transforms of
bq(t) and v(t), resp&tively. Then, find the quantities

rq(s)

and let Yq(t) denote

SI’EP2.

and solve the

= Bq(s) 1,...,Q
N+V(s) ‘ ‘=

the tiverse Laplace transform of rq(s).

Compute
t

= J’~(d7q(ddT

o

equations

---- —-—----- ---- —.-— ———. _ . -..—. — —.—. _____ .. . ._ ___
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[1 + Ill(t)]gl(t)+ Iu(t) ~(t) + . . . + .l@(t) ~(t) = Cl(t)

Ial(t)gl(t)+ [1+122(t)lg2(t) + . . . . + %@) &$t) = %(t)
-.

‘1
(9). ..0..0 . ...0. . . ...* ● . ...0= ● ****O*

ql(t) m(t) + +(t) &(t) -I-. . .+ [1 + ~(t)]~(t) = cQ(@
I

for the functions gq(t), q = 1, .

J

● “> Q.

unit step function:Finally, let u(t) denote the.
.-”.

[

0,.
u(t) =

1, t~o

> t<o

Then, the functim

g(t ,T) = U(t -T)
t

~(t)7q(T)

satisfies the integral

We now apply this to

1.

equation for the optimum

two exmnples.

Exsmple I

(lo)

impulseresponse.

To begin, consider the following question, equivalent to the one
already posed in the ~troduction. A collection of particles leaves the
origin at a certain time; thereafter, each particle moves with constant
(unknown) velocity. Assuming our measur~ents to be corrupted by white
noise, what is the best way to determine the positions of the particles
at any succeeding time?

Calculation of the correlation f’unctions.- Let a denote the speed

of a typical particle, and let % denote the mean square speed, aver-
aged aver all the particles. Although we do not assume a to be knmm ,
for any particular particle, we do assume the mean square speed ~ to
be lnmwn. u

We choose the time that the particles leave the origin as zero, so
that the messages (i.e., the particle positions) are given by ..

m(t;a) =at, t~o

-—.. . .—. ———— .--- —- .--- ——- --
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.

Hence, we can compute

IL

~(t,T)
‘Av{(at)(aT’} “ ‘

.
.7*T “

It is assumed here that the noise is white. It follows that it has zero
mean. If it is assumed (quite reasonably) that the noise and the message
are independmt, it follows that ~ = ~ = O, ad so

~(t,T)
‘Av{m@)i(T1

‘Av{m(t)m(T)}+Av{m(t’
= ~m(t,T) + Qm(t,T)

similarly,

The functions

Q=l. In fact, we

al(t)

9ii(t>T) = .C&$t,T) + qm(t,T)

.~t> b=(t) = t , cl(t) . Z* (n)

The integral eq~tion snd its solution.- To apply the method outlined
on pages 11 and 12, it is unnecessary actually to write down the integral
equation (6). However, it is convenient to have this equation, since it
can be used to check the answer. With the correlation functions given in
the preceding paragraph, the integral eqpation becomes

b
~tT

J
.~2T Ug(t,u)ti + Ng(t,T) , foro<T<t (12)

o

.- ----- - ... . . . —— —.. — ——- — .—. -----
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The
the

last term in this eq,,tion
expression for (pii;it is

arises frm the 5 function occurring in
not an integral since the fundamental

property of the 5 functton

J g(t,(J)b(T - ~)ti = g(t,T) if O~T~t

o

has been used.

We now apply the method outlined earlier to solve equation (12).
First, we check to see if assumption (iit) is fulfilled. It is, since

which
which

v

may be considered
is always zero.

= a=(t)b=(T) - a=(T)b=(t)

= 0

as a fUR&i~ Of t - T, notably t-t fbcti~

We now proceed with the soltiion.

SEEP 1. Since b=(t) is as @ven by (n), we have

B=(s) = ~

Also, since v(t) = O, V(s) = O. Thus, we define

r=(8) = ~
Nl#

y=(t) = ;

STEP 2. Since in this example, Q = 1, we need only find

sad inverting

—
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.

s.

.

t

I==(t) =
J’

al{T)~l(T)dT

o

Hence, equtions (9) become

that is,

gl(t) =
a%

1 i-(z/3N)t3

Therefore, by equation (10), the desired solution of the integral
equation (I-2)can be written:

‘(t,T) =

It should be noted that
is the response occurs at the

(13)

g(t,T) vanishes if the impulse to which it
the T = O. This is so because we have

assumed that the tiitial position of the particles istiown precisely -
that is, that at zero time the particles are all at the origin. This is
one of the many respects h which the present sbplified example does
not describe the lame situation for an actual gun platform.

The result can be checked by sbstittiion into eqyation (12). b
fact, for O ~ T ~ t,

.—.. .—.. . .. . . . . . . . — — —.— — — — . —— .—-. —
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which is as it should be.,

The error.- The ‘&imum
ti fact,

error can be found by

— t
= a=t= - J 2 ixE2~@) 0

N + (~/3)tg

Note that the error approaches zero as t + ~.

using eqyation (Ya);

#

The system differential eqyation.- We shall now derive a differential
equation which relates the tipti and output of the optimum system. Thus,
we seek two functfms, f(t,p) aud F(t,p), such that

F(t>p)g(*}T) = f(t,p)~(t-T) : (14)

where p = ajkt. These functions are required to be polynomials in p.
Also, for the tmpulse response (10), the order of the differential equa-
tion is always equal to the number”of terms in the sum on the ri@&hand
side of eqmtion (10) - that is, Q. Thus, we write

. . ..- .-— .
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..

.

.

F(t,p) = PQ+ &(th Q-L+ ...* + go(t) = (15) ‘-

Since there are no 5 functions in the expression (10) for g, the order
of f is at most Q - 1; hence,

f(t,P) = nQ-l(t)PQ-l + . . ● + TO(t) (16)

Our problem now is the determination Of the functions ~k =d ~k.

“In example I, Q = 1, and so “

F(t,p) = P + go(t)

f(t,p) = no(t) . ‘

Thus, the differential equation (14) becomes

,

Now, the function ~o(t) can be found immediately, since 5(t - T) = O

for t>T. Thu.s,for t>T we have. . .

go(t) = -
(a/bt)g(t,r)

g(t,T)
. .

Hence, from equation (13),

go(t) = Zzts-w
t(a=ts + 3N)

and the clifferential eqyation (17) becomes
. .

,

(17)

.4 (18)

To compute qo(t),“sub-stitute g(t,T) as’given by eqyation (13) into (18).
This gives

_. —.- .. ---- .———- —-- - .— —. -. .—— -——-
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b(t -T) =

Ii + (z/3)t=
To(-m(t - 7)
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.

US* the fact tht (d/dt)U(t- T) = ?5(t- T] . Now,

~t T
8(t - T) =

~tz
~(t - T)

N + (~/3)tS N + (~/3)tS

.

since for T + t, both sides of this equation are zero, while for T = t,
they are obviously equal. Hence

~o(t)~(t - T) =
~t=?

8(t -T)
N + (~/3)ts

that is,

me(t)=
~t2

N + (~/3)ts .

.

w

Therefore, finall.y,we may ssy tf i(t) is any input to the optimum
system and x(t) the corresponding output, x(t) and i(t) are related by
the equation

Example II

For our second example, we consider an air-to-air missile attack
situation. Since the purpose of this report is not the development of
an optimum missile guidance system, the problem will.be simplified to the
petit where the features of the method are nut obscured by the special
reqtiements of the problem. Although the resulting situation is unreal- .,
istic, it does still possess some characteristics of interest.

A two-dimensional situation, wherein the missile and the target move -
in one plane, will be assumed. The missile is fired at a certain ttie,
called zero, at which it is as-d the target position .islmown precisely.

-- -- .
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A coordinate system can then be fixed in space in such a way that the
target displac~ent initially is zero. It is assumed that after a cer-
tain time T the missile is moving so slowly it can no longer do any
demage; thus, if the target is to take effective evasive actim, it must
do so in the first T seconds after the missile is fired. Finally, it
is assumed that the evasive maneuver concerned is a step of magnitude
al, the jump occurr~ at the a2. Thus, we are considering the fol-
lming ensemble of messages (target displacement):

I o, t<%
m(t;cq,a2) =

la=, t>c@

Calculation of the correlation functions.- Let us assume a certaiu
probability distribution of magnitudes a= is lumwn; thus, we assume
bowledge of a function f(x) such that the probability that al lies
between x and x + dx is f(x)dx. As for the time ~ at which the
jump occurs, let it be assumed that this quantity has equal likelihood
~ftakingonsny value intheinterva10~a2 sT. Then, foro~T~t,

~(t,T)
{

=Av m(tjCQ#Z~)m(T;a12C@)

}

‘# f(aJf
m(t;a12aJm( T;al,*) da2dal

-m

Since m(T;al,aJ = O for ~ > T, this simplifies to

+Co

T=—
T,[

f(aJCLl%al

The integral occurring here is
ever the distribution function
square value of al by ~, we

=IaJ

just the mean sqtie value of a=, what-
may be; consequently, denoting the mean
obtain

.. . . .. ..-. — ——... --. ,_ —— ..— —.. .—. — . ..z — .—-. — .
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~(t,T) = ~ T for T<t

Now, it is obvious frmn the
function ~ is symmetric

definition (3) that the autocorrelation
iIltaIld T: ~(t,T) = ~(T,t) . Hence,

.

~(t,T) = $ t for T>t

Once again, we assume the noise white end independent of message,
so that

.ra12

TT for T~t

~(t,T) = ~(t,T) = _ “
a12 t for T>t
T

[-

~’r+~(t-T) for T<t
#

qii(*}T) = ~(tj ~)+~m(*,T) = _

~t +@T-t) for T>t

Comparing this form with equation (8b), we see that assumption (if) will
be fulfilled if we choose Q = 1 and

a=(t) ~ ~ , b=(t) = t , c=(t) = g

The titegral equation and its solution.- Equation (6a)
this case,

T t
a12 a12
TT=T J Cfg(t,Cf)ib + $ TJ g(t,cf)du + Ng(t, T) ,

0 T

becomes, in

O~T~t

Before proceeding to the soluti~, we check t-t as-ti~ (ii’)
is fulfilled. We have ,

.

—. —. .- — —-——. .— .—
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.

.

Hence it is

We now

fulfilled,

v= a=(t)b=(r) - &=(T)b=(t)

with v(t) = -

apply the method outlined

1. We find first that

Hence, we define

a12 t
—a

T

earlier.

Bl(s) =+

q~
v(s) = -—

T S2

1

r=(8) s
~

N
~

-G

1=
a=2

NS2 - —
T

Consequently,

where

.. —- ..__ .—. —. —z ..—. _____ __..
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STEP 2. We have

t

I==(t) =
J

a=(7)71(T)dT

o

= cosh At - 1

Hence, eqmtions (9) become

g=(t) cosh At
~_ _~2
T

that is,

%(t) = NA2sech At

be

(Ta)

used

Therefore, from equation (10), the optimum impulse response can
written:

g(t,T) = Au(t-7)sechht SM~T

The error.- The minimum mean square error may be found from equation
to be

=IntEulh At

The system differential equation.- By exactly the ssme method as was
in exsmPle 1, the differential equation relating the output of the

optimum SYSt-= to-the input can be shown to be

* + (A tanh Xb)x = (A tanhAt)i

—. . .-- —- . . ..-— — ---
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(YIIEERTYPES W NOISE

.

In this section, we shall assume the autocorrel.ationof the inputs
not to contain 5 functions. With this assumption andasmntrptions (i)
and (ii) of pages 7 and 8, the method for solving the -integralequation
can be outlined as follows:

STEP 1. Let %(s) and W(s) denote the Laplace transforms of
~(t) and w(t), respectively, and define

%(s)
rp(s) = —

w(s)

Let 7p(t) denote the inverse Laplace ‘transformof rp(s).

STEP 2. Set

t

Ipq(t) =
J

ap(T)7q(T)dT
o

.

Let alp(t),p = 1, . . ., P be any P functions having the form

alp(t) = Cp(t) - I dk
hk(t) — ap(t)

k
dtk

Solve the equations

[1 + Ill(t)]g~(t)+ I=(t) ~(t) + . . . + I~(t) gp(t)= %(t)

I=I(t) gl(t) + [1 + Ia(t)]~(t)+ . . .+ I=(t) ~(t) = ~(t)1

. . ...0. . . . ...0 ● .

Ipl(t)gl(t)+ Ip=(t)~(t)

for the gq(t) as-functions of the

g(t,T) =
I

hk(t)b(k)(t- T)+

k

will satis& the integral eq=tion
be.

(19)

j

(20)
.. 0..00 . . ...0. . . .

+ . . . + [1’+ In(t)]@(t) = alp(t)

alp(t). Then, the function

P

U(t - T)
I

gv(t)7v(T) (21)

1

(6), whatever the Mctions hk may

. —. ..— —— -- .—— —— —-— --
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sml? 3. Choose the functions hk ~ such away that g(t,T)
is as simple as possible, tivolving the least possible number of
differentiations.

3791

It is realized that the description of step 3 is rather vague, but
examination of the-exsmples which follow should clarify this.

We now turn to the exsmples;

mle

This Wird exsmple will be the
being in the noise.

The correlation functions.- As
the messages has the form

same as the first, the only difference

in example 1, the autocorrelation of

Let us
mean.

~(t,T) = FtT (22) ‘

assume that.the noise is tidependent of the message and has zero
Then, as before

..

~(t,T) = %Jt,T)

= ~t~

Finally, we shall take the autocorrelat-ionof the noise to be

This eq?ression
The assumptions

We mention
white noise as

b (23)

(24)

approximates the autocorrelation of actual radar noise.
made imply that

~tT + Be-~lt-Tlqi(t,T) = CL

here that the noise described by equation (24) approaches
B snd f3 a~roach infinity; this will be shown beldw.

.

-.

—_.—_ _____ _ -. —..._____ _. - -
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The integral eqyation and its solution.- Once again, it is not neces-
to write down the integral equation, but we shall do so stice it can

be used to afford a useful check on
functions of the preceding section,

.t

the results. With the correlation
the integral eqyation (6a) becomes

+ Be-~TrT@-dt,dti+

u
T

We now solve this eqmtion by ‘themethod outlined.
the expressions (22), (~), and (24) for the correlation
the expressions (8a) gives the results P = 2, and

Ccmlparisonof
functicms with

a=(t) . Z* b=(t) = t c=(t) . Z*

a=(t) = Be-~t bz(t) = e@ c=(t) = o

Hence,

w= ~t.T- ~T ● t + Be-@’ .

= -~ SiIlh ~(t - T)

= W(t - T)

Thus, assumption (ii) is satisfied with

. w(t) = -m Sinh

m!lm 1. Tak5ng Laplace transfoms,

B=(s) = ~ , B2(S)

w(s) = - --&--- $=

—.

(25)

e~? - Be-~T . e@’

flt

we have

1=—
s- P

. . .. . . .. ... .. . . ..—____ .— ___ __ —.— - —....—- —__ — —-.



Therefore, we define

S2 -
B2 1r2(S) = - ~B —

s-$

.A.&E

Inverttig the Laplace transform gives

71(t) =* [B* - dt)l

72(t) = * [w - IMt)l

Sl?EP 2. We h2ve

4.L1
Iu(t) ==

J’
T[6(T) - @( T)]dT

o

~
=.—

2Bp

.

since, in general.,

NAcA m“3791

.

(26) “

t

J’f(T)~(n)(T)d7= (-l)nf(n)(0)

o

— —.——..—.—- .—-.—— ---
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Consequently,

t

12=(t) = &
J

e-~T[~2T - ~(T)]dT

o

{ }
$ [l-e+t(l+pt)] -1=—

= -e+ 1+ m

2$

Jt e-~T[6(T) - @( T)]dTIs(t) = ~

o

-%B -B)= 2$

= 0.

equtions (20) for gl end & become

(l+-W) -Z=(t)=‘l(’)
-e+ 1 + pt

—gl(t) + dt) = dz(t)2$ 1

These equations can be solved to give

2Bpd~(t) + a L3.Jt)
gl(t) =f%

2132(6B+Bi%% -3Z(l+~t)e-@

i32(t)= a
3B(1 + ~t)e-~td=(t)+ j3(6B+ ~~i$)~(t)

2~2(6B +p~ts) - 3~(1 + ~t)e-pt

1,

25

(27)

.-. ..— —.. _ ___ __. . . ——— .— _ - .——-—...-—. —
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STEP3. We have now arrived at the task of solidi~g the earlier
vague description of this step. The idea-behind step 3 is very shple d

and was conceived in order to reduce the number of differentiations of
noisy inputs.

Note first that if all functions hk were taken to be zero,
the solution (21) would contain only the second sum in that expression
and so would resaible very closely our earlier solution (10) for the
case of white noise. However, although the solution (10) of any prob-
lem involving white noise will never contain a differentiator,2 this
is not the case for other types of noise. h the present exem@e III,
the existence of a differentiator manifests itseM through the occurrence
of a term 6(t) in the expression (26) for y2(t).

Now, the function 72(T) is multiplied ti equation (21) by g2(t).

Consequently, if g= could be made to be zero, the differentiator in
72 would be eliminated. From equation (27), we see that setting g=

equal to zero gives an equation h the dts. According to eqution (19),
however, the dts are functions of the h?s. Therefore, if the func-
tions hk are free and may be assigned at will, there is the possibility

that ~(t) may be made to vanish. Xn this example, drilycme function .

(~) must be el~ted; consequently, there appears to be need for only
one function h, and so we set

----
hk(t) = O , k>l”

..
leaving only ho(t).

1
.“

Now,

By virtue
an(t), we

setting ~(t) equal to zero gives

3B(1 + pt)e-~td=(t) + P(6B + ~=%s)d~(t) = O (28)

of equations (19) and the given values of the functions
have

d=(t) = ~t[l - ~(t)]

d2(t) = -Be”~~(t)

Therefore, equation (28) is equitient to

3at(l + f3t)[l- ho(t)] - p(6B + P>t%&) = o

2This follows from the fact that when the noise is w~te, the
titegral.equaticm is of the second kind (cf. (12)).

.— —. ..— —.—— - ------ .
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that is,

hJt) = 37%(1 + fit)

6BB + 3Z% +3 Z@+ ZP%s

We know now that with this choice of ~ and with all other hk
taken as zero, & will be zero snd the filter will contain no
differentiators.

The calculated value of h when inserted into the exmessions
for d= and dz gives

d=(t) =

~(t) =

Therefore,

#31(t) =

132(t) =

1

o I
J

By equation (21), then, the optimum impulse response will be

g(t, T) = gl(t) ~ t~[jvru( - T)+(I + j3t)a(t - T) - 5(T)]

(29)

(30)

Where gl(t) is given by equation (2g).

The error. The minimnu mor can be found us- eqpation (Ta); b
fact,

. . . ___ _____ ... .. . . —.. -—. —.-— .—— ————.



E2ti(t) =

-+

6BP~t=

6Bp+@~pa7%q3=ts

The system equations.- Let us ptiition
into two parts; we do this because the term

NACATN 3791

T[ l+flt) 8(t-T)+~2T-b(T) ] dT

[
t(l+flt) +% 1}

the @@se response (30)
5(T) which occurs iS essen-

tially di-ffer& from the uthers. Thus, we write
.

g(t,r)= k(t,T)-t(t,T)

where

k(t,T)= g=(t) [~2q@-T)+(M-f)t)~(t+T)] .

z(t,T) = gl(t)~(T) (31)

Each of these terms is an inpulse response in its own right. We begin
this section by finding the differential egyation satisfied by the
response k. ThusY we mce again seek two functions F(t,p) and f(t~P)~
polynomials in p = d/dt, such that

The
m
for

F(t,p)k(t,T)= f(t,p)~(t-T)

order of F(t~p) is always equal to the nuniberof terms in the second
of equation (Z@; thus, in general.,this order would be P. However,
this example, *(t) = 0, and so there is only one term left in this

sum. Therefore, we set

.F(t,p)= p%o(t) .

.-
.

.. .—. —— ..-. ——.
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There is exactly one 5 function
follows that f(t,p) has the same

29

h the expression (31) for k(t,T); it
order as F - that is, we mey set

f(t,P)=llJ-t)P+no(t)

The differential equation we are seeking therefore reduces to

$ k(t,d + Eo(t)k(t,d = qo(t)b(t - T)+ q=(t)~(t - T) (32)
.

As before, 5(t -T) is zero for t > T; therefore, we find

Eo(t) = -
(~~t)k(t ,T)

k(t,T)

since U(t -T) =1 for t>T. Thus,

go(t)= - _ (33;

!!?ofind q. and q~, substitute equation (31) into (32) with ~.
given by (33). This gives

i31(t)[13(l+b)~(t - d+(l+pt)~(t - T)] ‘qo~(t - T) +il(t)~(t - T)

Hence, just as in example 1,

no(t) = J3(l+IN)fh(t)
.

T@) = (1+flt)gl(t)

Thus, the input-output relationship for that part of the optimum system
described by the impulse response k(t,T) can be written

..- ..-. .— -. --— _____ _.. ._ __ - ———. —. ——- . . . . —.. - —— —.. .— —--
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* al(t).— ()x=(l+j3t)gl(t) w+%
131(t)
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(34)
.

where gl(t) is given by equation (2$J).

It remains to discuss the impulse response Z(t,T). This response
corresponds to a “memory” element, the output of which is put through a
time-variable ‘gain.” This is clear, for according to eqwtion (2), the
response of the system with 5mpulse respcmse z toenytiput i is

/’tz(t,T)i(T)dT=ftg=(t) 8( T)i(T)dT

o
do

--
.. - = 131(t)i(o)

Thus, we find the opt- system to be that system whose response
is the difference of the responses of the system described by equation (33) “
and t~e %emory-gain” qgstem having the impulse response Z.

The limiting case.- It was mentioned earlier that the noise described “
by the autocorrelation (24) is approximated by white noise when B and $
are large. To see this, consider the integral eqpation (25). It is not -
hard to show that as ~ + m,

J’ (P)‘e+(-dg(t,~)ti=;g(t,T)+ 0 +

o

Hence, if B = N /2, the last two terms of the integral eqyation (25)

!~approach Ng(t,T as ~ + m, SO that the titegral eqUatiOn itSe~ resem-
bles equation (M?) more and more closely. This fact can be used as an
additional check on our results, for the impulse response (30) should
approach (13) as p + m. This is the case, for with B = NB/2, then as
p+m,

Hence, all the terms h eqpation (30) except the first a~roach zero, so
that

3=* ;(t-T)g(t,T) + —
3N +Zts

which agrees with equation (13). -

.- —.. _ —_ ___ ___
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Example IV.

For our fourth example, we consider a problem in a~roximate differ-
entiation. This will serve to illustrate the solution when the more
general formulation leading to eqpation (6b) is used. !&e problem will -
be to find the slope of a measured line passing

Calculation of the correlation functions.-
line be

through the origin.

Let the eqpation of the

m=at

where it is assumed that the~lopes a have a certain probability dis-
tributicm. We shall write a= for the mean sqyare value of a. Since
it is desired to find the slope of the line, the output of the filter
should as closely as possible approximate the qpantity

About the noise, it will be assumed it is independent of the message
and described by the autocorrelation function (24). Then

@&d
{1

=Av a=aT

Qijf%d ‘Av
{1

d ● aT + Be-p (t-T)

= ~tT+Be-~l ‘-TI

for t,T ~ o.

The integral eq.tion and its ~olution.- Substituk- the above cor-
relation functions into equation 6b), we see that the opt- impulse
response must satisfy

.. —._ ______ ----- _ . .. .. . . -—-— . _ ___ _ - -—— —-. —.... —
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\

(35)
LJT

This equation is very similar
fact, it can be solved -diately
Multipl.yequation (35) through by
written

.t

:
t;

the earlier eqyation (25) and, in
ustig the sO1utiOn”(30) of (25).
the resulttng equation can then be

~tT . ~T I- a[tg(t,a)lti+Be-~T ~’ &U[tg(t,cr)]da+

which is exactly the same as equation (25) with g(t,a) replaced by
tg(t,a) throughout. Consequently, from equation (30), the impulse
response satis~

g(t,T) =

(35) is

%(t) ~ t
~[Dld- T)+(l+ flt)~(t - T) - 5(T)]

.

(36)

where gl(t) is given by equation (29).

The error.- According to equation (7b), the mean square error of the
optimum system will be

t

E=*(t) = >- J ~Tg(t , T) dT

o

Note that this implies that the error”can be made as small as desired by
measuring the line for large enough t.

.

-.. .— .. —--.—. -—
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The system equations.- As ti example III, the optimum response is
now divided in two parts:

$(t,T) =k(t,T)- Z(tjT)

where

‘$: [P2W(t - T)+(I+ ~t)b(t- T)]k(t,T) = —

The tiput-autput relation corresponding to the impulse response k
can be found by using the techniques preciously described or by using
equation (34). There results .

(>t++l+ ()=(l+pt]g.(t) pi++

As before, the -se response Z corresponds to a memory-gain
element.

The limiting case.- The above solution (36) simplifies if B and j3
are large. In this case, set B = N~/2 and let ~ +m. Then,

—3a2T
$(t, T) + U(t -

3N+zts

It is clear that one
last section fails. This

THI CASE w-O

special case exists

T)

for which the method of the
is the case when the function w of assump-

tion (ii) is identically zero. The failure arises in the very first step,
since the functions rp(s) cannot even be defined. A technique applicable
when w s O will now be described.

h this case, unfortunately, there is no method which can be fo~~ed
mechanically in all cases. The reason for this is that if w= 0, th=e
may not be any.solution. In fact, it.can be shuwn that w s O implies
that there is either no solution at all or else there are infinitely many.

If no solution exists, it means, of c~se, twt the ori~l ques-
tion was imprope&ly posed and it was not an optimization problem at all.
Hence, we shall assume that solutions east.

.- .—— .- .. . .— —- -- -.—
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To show how to find a solution, let

P

~ii(t,T) =
I

~(t)b.&) , T~t

1

P

@t,T) =
I

T<t~(t)~(T) , –

1

as before. We now assume that P functions 7p(t)
that the determinant which has

t

Ipq(t) = J ap(d7q(cf)ti

o

in its pth row and qth column is different flmm
there are no set rules for determining
are lumwn, however, the opt- Cm be

Solve the following equations for

P

) Ipq(t)gq(t) = alp(t) ,

}“(37)

J
can be found such

zero. Unfortunately,
these functions 7n. If these - .

determined as foil.-ms.

the functions ~(t):
“

P=l}”””>p (38)

q=l

Then, the function

P

I hk(t)t$k)(t - T)+ ~(t - T) ~@)7p(dg(t,T) = (21)
p=l

satisfies the integral equation pruvided the functions alp(t)are given
by the equstion

~(t) ‘cp(+k(t)~al?t) , P =1, . . ..P (19)

k

Example V

To illustrate the method just described, consider the
ficial problan of measuring the lengths of a collection of
it is definitely known that these lengths are not less than Al nor more

.

somewhat arti-
,.

rods. Suppose

——— ——— —-.- -
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than A= inches, and that our measuring device is a ruler which can be
read with an accuracy of = inches; in this case, the messages, that is,
the lengths of the rods, can be Interpreted as steps applied at time zero,
of magnitude a, where Al ~ a ~ A2. Shilarly, the noise, that is, the
least reading of the ruler, can be interpreted as a step of magnitude 13
where -B ~ ~ ~ B. When viewed in this light, the problem is amenable to
the techniques of this report.

The correlation functions.- Assume that all values of a and ~ in
their respective ranges are equally Mlsely. Then, for t,T ~ O,

~(t,T) =
{.

Av m(t;a)m(T;a)
}

.

.

42
1=—

AZ -A= J
a2~

A=

. A12 + A=& +A22

3

Setting A2 = AX2 + AIA2 + A22, we have

Assuming a and $ independent, we see that

Qti(tid ‘Av{a(a+’)}
{}

. AT U2

. &+B2

37

(39)

(40)

-. -.. . . ... .. ..—. —.——. - — —— ---- -— ——-. .—.
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The integral eqyation end its solution.-

qti and (pii into equation (6a) gives for the

optimum

NACATN3791

Substituttig the functions

integral eqzation for the

t
A2 A2 + B2.=—
3 3 1

g(t ,a)aCr

o

which clesrly is satisfied by

g(t,T)
A2=_ b(t-T)

A2 + B2

(41)

(42)

Thus, a solution of eqpation (41) can be found by inspection; we
nbw attmpt to find a solution by the method described on page 34. In
order to illustrate a difficulty which somethnes arises when apply3ng
any of the methods which have
wrong procedure.

Compar@ eqwtions (37)
that we may write P = 2, -a

Huwever, with
@st, for no

A2al(t) = — ,
3

*(t) = :,

been described, we shall begin with a

with equations

b=(t) = 1 ,

b2(t) = 1 ,

(39) m (40), we conclude

A2cl(t) = —
3

Cz(t) = o

this choice of these functions, no solution appears to
matter what 71 and 72 may be

111 I=

=

121 122

tA2

7 J’
71(T)dT

o

t
~2

-3- J’
71( T)d-f

0

Thus, we might conclude from what has

t
A2
T J

72( T) aT

o

gone before that no solution
exists; h6wever,-this apparent nonexistace of a solution does not with-
stand close analysis, stice we bow that there is at least one solution -
giv~ by eqpation (42). The difficulty encountered is due to the fact
that the functions a=(t) end ~(t) as chosen above are linearly depend-
ent. In order to arrive at a correct solution, it is always essential
that the functions al(t) and ~(t) as well as the functions bl(t)
and b2(t) be chosen so that they are independent.

.-. . ..— .——. —-.— ------- ...—— - -
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Perhaps the simplest
. taking P = 1 and setting

correct solution of the problem results by

A2 + _J32
al(t) = ~ , b=(t) = 1 , c=(t) = f

Then, there is only one function Ipq, notabw

From equation (38), we then conclude that whatever 7= may be,

a=(t)
131(t) =

A2 + B2
t

J’30
71(u)~

JA2- (A2+B2)%(t)

by
to

(A2 +B2) ~b 7=(cr)ih3

’37

equation ‘(20). For the usual
obtain from equation (21)

d
o

reasons, we now set hk(t) - O,k~l,

g(t,T) = b(t)~(t - T) +u(t - T) ‘2 - ‘A2+ ~;)%(t) 71(T) (43)

This function optimizes the
choice of ~(t) which most

which results in

J(A2+B2) 71((J)ti

o

system whatever ~(t) may be; clearly the
shplif ies g(t,T) is

ho(t) = A2:2B=

.

dt>T) =& ~(t- T) -
.

in accordance with equation (&).

. ..-. -—. . . .—— _ —— .—.. — .—— . — .-.—.—
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The error.- According to eqution (7a), the mean sq,,e error of the
optimum system is

t
E“=*(t) = $- J[ 1&~(t-r)$dT

0

.B2 1

3 1+ (B/A)2

~ B2

—>3
if :<<1

It should be noted, incident~y, that it can be shown that all
systems described by eq&tion (43), no matter what ~(t) may be, have
the same error; of coursej this was implied previously by calling all
functions (43) “qtinla.“ To see this, consider the error corresponding
to the tmpulse response (43). We have

. A:-A: t

w(t) s s J
[
h.&)~(t - T) +U(t - T)

A2 - (A2+ B2)~(t)

171(T) dT
o (A2+B2) ~t 7z(a)da

d
o

=~ A2

33

L

hJt) +
A2 - (A2+B2)~(t)

(A2+ B2)
.f

71(~)~

o

t

J’
1

71(T)dT
o

[
=+$ %(t) +*-W

1

.B2 1
3 1+ (B/A)2

= F*(t)

The system equation. - It is obvi~ that the syst& with impulse
respcxme (42) is a s*le gain. Thus, the output is obtained from the
input by multiplication of the latter by the gab A2/(A2 + B2). To find
the best estimate (according to the present criterion) of the lengths of
the rods, the measured l~hs should be multiplied by A2/(A2+ B2).

—_. — .- .-— -—- ——— —--- — .
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This result,
is qtite general,

39
.

that the optimum system is simply represented by a gain, --
being true whenever the ratio cpti/q)liis a constant.

In such a case, the opt- system is a gab adjusted so that the meen
square of the output is the same as that of the desired quantity p.

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics

Moffett Field, Calif., June 13, 1956
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